
Rugged Device for Intermediate-Power Applications in Industrial and Commercial Equipment

Applications:

- Power switching circuits
- Series- and Shunt- regulator driver and output stages
 High-fidelity amplifiersSolenoid drivers

Terminal Designations

The 40250V1 is a hometaxial-base silicon n-p-n transistor intended for a wide variety of medium- to high-power applications. The 40250V1 is supplied in the JEDEC TO-66 hermetic package with factory attached heat radiator inteded for printed-circuit-board applications.

JEDEC TO-66 with attached heat radiator

Source: RCA SSD-220C (1981)

MAXIMUM RATINGS, Absolute-Maximum Values:

V _{CBO}	50	V
$V_{CEV}^{(SUS)}$ ($V_{EB} = -1.5$ Volts)	50	V
V _{CEO} (SUS)	40	V
V _{EBO}	5	V
I _C	4	А
I _B	2	А
P _T At ambient temperature up to 25°C P _T At temperatures above 25°C	5.8 derate linearly to 200°C	W
$T_{stg}T_{J}$	-65 to +200	°C
T _L At distance ≥ 1/32 in. (0.8mm) from seating plane for 10s max.	235	°C

Electrical Characteristics, at Case Temp. (T_C) = 25°C unless otherwise specified

		TEST CONDITIONS						
CHARACTERISTIC	SYMBOL	VOLTAGE V dc		CURRENT A dc		LIMITS		UNITS
		V _{CE}	V _{BE}	I _c	I _B	Min	Max	
Collector Cutoff Current with base open	І _{сво}	V _{CB} = 30		I _E = 0		-	1	- mA
At T _C = 150°C	І _{сво}	V _{CB} = 30		I _E = 0		-	5	
Emitter Cutoff Current	I _{EBO}		-5		0	-	5	mA
Collector-to-Base Breakdown Voltage	$V_{(BR)CB0}$			0.05		50	-	٧
Collector-to-Emitter Breakdown Voltage	V _{(BR)CEV}		-1.5	0.05		50	-	V
Collector-to-Emitter Sustaining Voltage with base open	V _{CEO} (sus)			0.1ª	0	40	-	V
Emitter-to-Base Breakdown Voltage I _E = 0.005A	V _(BR)EBO)					5	-	V
DC Forward Current Transfer Ratio	h _{FE}	4		1.5ª		25	100	
Collector-to-Emitter Saturation Voltage	V _{CE} (sat)			1.5ª	0.15ª	-	1.5	V
Base-to-Emitter Voltage	V _{BE}	4		1.5		-	2.2	V
Common Emitter Small Signal Short-Circuit, Forward Current Transfer Ratio Cutoff Requency	f _{hfe}	4		0.1		-	-	MHz
Termal Resistance Junction to Case Junction to Ambient	$oldsymbol{R}_{ heta JC}$						nax)	°C/W

Note a: Pulsed, Pulse duration = $300\mu s$, duty facor = 1.8%

www.web-bcs.com Source: RCA SSD-220C (1981)

Terms and Symbols

- common-base output capacitance

- gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope)

 $\boldsymbol{f}_{\alpha b}$ - base (alpha) cutoff frequency

- dc forward-current transfer ratio

 \mathbf{h}_{fe} - common-emitter, small-signal, short-circuit, forward-current transfer ratio

- magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio |h_{fe}|

- continous collector current I_{c}

- peak collector current

- collector-cutoff current with specified resistance between base and emitter I_{CER}

- collector-cutoff current with specified circuit between base and emitter I_{CEX}

- continous base current

- emitter-cutoff current, collector open I_{EBO} - collector-cutoff current, emitter open I_{CBO}

I_{S/b}
P_T
r_{CE}(sat)
R_{BE} - forward-bias, second break-down collector current - transistor dissipation at specified temperature - dc collector-to-emitter saturation resistance - external base-to-emitter resistance $R_{\theta JC}$ - thermal resistance, junction-to-case $R_{\theta JFA}$ - thermal resistance, junction-to-free air

- delay time t_{d} - rise time - fall time

 I_{CM}

- case temperature - storage temperature

t_r
t_f
T_C
T_{stg}
T_J
T_L
V_{CBO} - operating (junction) temperature - lead temperature during soldering - collector-to-base voltage, emitter open $\begin{array}{lll} V_{\text{CEO}} & -\text{ collector-to-emitter voltage, pase open} \\ V_{\text{CEO}}^{\text{(sus)}} & -\text{ collector-to-emitter sustaining voltage, base open} \\ & -\text{ collector-to-emitter sustaining voltage with specification} \end{array}$

V_{CER}(sus) - collector-to-emitter sustaining voltage with specified resistance between base and emitter

- emitter-to-base voltage, collector open $\rm V_{\rm EBO}$

 $V_{BE_{\mathfrak{g}}}$ - base-to-emitter voltage

 $V_{\text{CE}}^{-\text{sat}}$ - collector-to-emitter saturation voltage

- torque

- conduction angle

Source: RCA SSD-220C (1981) www.web-bcs.com